pedagogyreview
Разное по педагогике » Методика преподавания темы "Системы счисления" слабослышащим учащимся 10 классов » Методические рекомендации по преподаванию вопросов, рассматриваемые по теме «Системы счисления»

Методические рекомендации по преподаванию вопросов, рассматриваемые по теме «Системы счисления»

Страница 4

55510= 5*102 + 5*101 + 5*100, то есть позиция цифры показывает, в какую степень надо возвести основание в развернутой форме. А теперь сформулируем правило позиционной системы счисления: Чтобы получить значение числа надо цифры умножить на основание в степени позиции и сложить.

Для записи десятичных дробей используются разряды с отрицательными значениями степеней основания. Например, число 555, 25 в развернутой форме будет записываться следующим образом:

555,2510 = 5*102 + 5*101 + 5*100 + 2*10-1 + 5*10-2. Данные показывается в приложении 4.

В общем случае в десятичной системе счисления запись числа А10 , которое содержит n целых разрядов числа и m дробных числа, производится следующим образом: A10 = an-1*10n-1 + an-2*10n-2 + …+ a0*100 + a-1*10-1 + a-2*10-2 +…+ a-m*10-m. Эту общую форму записи числа в десятичной системе счисления учащиеся должны записать в тетради.

Аналогично можно получить развёрнутую форму чисел в других системах счисления. Например, для двоичного числа. В двоичной системе счисления основание = 2, а ее алфавит состоит из двух цифр – 0 и 1. Следовательно, числа в двоичной системе в развернутой форме записываются в виде суммы разряда степеней основания 2 с коэффициентами, в качестве которых выступают цифры 0 или 1. Рассмотрим пример двоичной системы счисления, в свернутой форме в двоичной системе выглядит таким образом:

A2 = 101,012.

В развернутой форме число в двоичной системе выглядит так: A2 = 1*22 + 0*21 + 1*20 + 0*2-1 + 1*2-2

В общем случае в двоичной системе счисления запись числа A10 , которое содержит n целых разрядов числа и m дробных числа, производится следующим образом:

A2 = an-1 *2n-1 + an-2 *2n-2 +…+ a0 *20 + a-1 *2-1 + a-2 *2-2 +…+ a-m *2-m .

Так в восьмеричной системе основание равно 8, тогда записанное в свернутой форме восьмеричное число A8 = 673,28 в развёрнутой форме будет выглядеть так: A8 = 6*82 + 7*81 + 3*80 + 2*8-1.

Также в шестнадцатеричной системе счисления основание равно 16, тогда записанное в развернутой форме число A16 = 8A,F16 будет иметь вид:

A16 = 8*161 + A*160 + F*16-1. Итак, в общем случае в системе счисления с произвольным основанием q запись числа Aq , которое содержит n целых разрядов числа и m дробных разрядов числа, производится следующим образом: Aq = an-1 *qn-1 + an-2 *qn-2 +…+ a0 *q0 + a-1 *q-1 + a-2 *q-2 +…+ a-m *q-m .

Сказать, что произвольное основание это могут быть любое основание позиционной системы счисления - это могут быть и пятеричная, троичная система счисления и т.д. Можно задать учащихся привести свои примеры троичной, пятеричной и записать эти числа в развернутой форме.

Следующий вопрос, изучаемый в этом разделе – методы перевода чисел из одной системы счисления в другую. Основная идея заключается в следующем: перевод чисел неизбежно связан с выполнением вычислений. Поскольку нам хорошо знакома десятичная арифметика, то любой перевод следует свести к выполнению вычислений над десятичными числами.

Объяснения методов перевода следует начать с перевода десятичных чисел в двоичные системы счисления. Для этого взять любое двоичное число, например 11102. Сначала записать его в развернутой форме и произвести вычисления: 11102 = 1*23 + 1*22 + 1*21 + 0*20 = 1410. Затем задать пример учащимся перевод десятичных дробей.

Перевод чисел из восьмеричной системы счисления в десятичную систему счисления. Возьмем любое восьмеричное число, например 67,58. Запишем его развернутой форме и произведем вычисления: 6*81 + 7*80 + 5*8-1 = 6+7+5/8 = 55,62510 (Приложение 6)

То же самое и перевод из шестнадцатеричной системы счисления в десятичную систему. Например, число 19F16 запишем в развернутой форме и произведем вычисление: 19F16 = 1*162 +9*161 +F*160 = 1*256 + 9*16 + 15*1= 41510.

Теперь перевод чисел из десятичной системы счисления. Сначала рассмотрим перевод целого числа из десятичной системы счисления. Перевод чисел из десятичной системы счисления происходит также через развернутую форму записи числа. Только эта задача более сложная, поскольку теперь необходим алгоритм перевода. Чтобы перевести число из десятичной системы счисления в новую систему, необходимо выполнять последовательное деление нацело десятичного числа на основание новой системы счисления, а затем выписать остатки от деления . Следует знать алгоритм перевода чисел из десятичной системы счисления:

Страницы: 1 2 3 4 5 6 7 8

Это интересно

Методы контроля
Устный опрос требует устного изложения учеником изученного материала, связного по­вествования о конкретном объекте окружаю­щего мира. Такой опрос может строиться как беседа, рассказ ученика, объяснение, чтение текста, сообщение о наблюдении или опыте. Устный опрос как диалог учителя с одним учащимс ...

Измерение напряжения при деформации
Зависимости напряжения-деформации при растяжении определяют следующим образом. Образец, имеющий форму двойной лопатки, растягивают с постоянной скоростью и регистрируют приложенную нагрузку и удлинение. После этого вычисляют напряжения и деформации: Универсальный образец для испытаний ISO R527 Диаг ...

Теоретические основы лексических навыков устной речи и чтения
В нашей стране в последние годы предпринят опыт обучения детей иностранному языку в дошкольных учреждениях. Иноязычная лексика является объектом рассмотрения во многих психологических, методических разработках отечественных и зарубежных исследователей. Психологические аспекты обучения лексике рассм ...

Навигация по сайту

© 2025 Copyright www.butem.ru