pedagogyreview
Разное по педагогике » Обобщения при обучении решению математических задач » Обобщение способов решения конкретных задач до метода решения класса задач

Обобщение способов решения конкретных задач до метода решения класса задач

Страница 2

Так же распространено обобщение решения различных конкретных задач до метода решения класса задач.

Пример 11. Введение метода построения вспомогательных треугольников, который позволяет на протяжении изучения всего курса геометрии решать многие задачи на построение единым подходом, хотя они могут быть и различного содержания.

Суть метода – построение вспомогательных треугольников и использование их свойств и вновь полученных элементов для окончательного решения задачи.

На анализе построение трех задач можно вывести общий метод построения всех задач такого класса, который записывается в последний столбец таблицы. При таком подходе учащиеся четко различают этапы метода.

Обобщение методов решения задач

При изучении методов решения математических задач индуктивные обобщения могут осуществляться следующим образом:

1) обобщение и систематизация способов решения конкретных задач до методов решения класса задач;

2) обобщение и систематизация методов решения класса задач.

Для систематизации знаний учащихся, приобретенных при решении конкретных задач, полезно делать обобщения решений до метода решения класса задач.

Пример 12: обобщение и систематизация методов решения задач о длине окружности и площади круга.

После решения ряда задач с применением формул длины окружности и площади круга в 9 классе на уроке геометрии можно провести с учащимися обобщающую беседу.

Основными при изучении темы «длина окружности и площадь круга» являются шесть объектов: R – радиус, С – длина окружности, S – площадь круга, угол с градусной мерой, L – длина дуги, Sc – площадь сектора.

В беседе следует отметить, что формула длины дуги это обобщенный случай формулы длины окружности, то есть когда угол равен 3600. Аналогичное обобщение можно провести и с формулой площади круга до формулы площади сектора. Тогда количество объектов уменьшится с шести до четырех и можно рассмотреть два основных соотношения между ними:

, .

Если заданы два компонента из четырех, то две оставшиеся могут быть вычислены. Таким образом, возможные типы задач определяются данными: 1) L, ; 2) S, , 3) R, , 4) L, R, 5) S, R, 6) S, L.

Если же речь идет о длине окружности и площади круга, то количество типов задач уменьшается. Целесообразно провести специализацию и рассмотреть этот случай. Обобщение показывает взаимосвязь нахождения длины окружности и длины дуги окружности, площади круга и площади сектора, так как такие громоздкие формулы плохо запоминаются учащимися.

Такие обобщения позволяют выявить связи изучаемого с изученным ранее и сформировать как общие методы решения классов задач, так и систему методов решения задач.

Индуктивные обобщения методов решений задач, а так же их систематизация приводят к формированию системы советов решающему математическую задачу.

Обобщение способов поиска решения многих задач до системы советов

В процессе решения задачи деятельность учащегося направлена на понимание задачи, осуществление поиска ее решения. Таким образом, она направлена на осознание, систематизацию и выяснение той информации, которая является явной в задаче.

Советы при решении различных задач должны обладать общностью, должны быть естественны и просты.

Все советы можно разделить на четыре группы, которые соответствуют четырем этапам решения задачи: усвоение содержания задачи; составление плана решения задачи; реализация плана решения задачи; анализ и проверка правильности решения. На первом этапе деятельности целью является достижения осознанного понимания словесной формулировки задачи. Взгляд на один и тот же факт или объект задачи с различных сторон помогает оценить связь объекта задачи с другими данными или внешней информацией. На втором этапе должны быть установлены связи различных объектов в задаче и выявлена связь с внешней информацией, с ранее приобретенным опытом. Учащийся должен внимательно, многократно и с разных сторон рассмотреть все компоненты задачи, их внутренние и внешние связи и осуществить составление плана решения задачи. На третьем этапе осуществляется сам план решения задачи, на четвертом – исследование полученного решения.

Страницы: 1 2 3 4 5 6

Это интересно

Анализ программного содержания по формированию эмоциональной сферы детей дошкольного возраста
Для определения направлений формирования эмоциональной сферы детей рассмотрим задачи программ: программы социально-эмоционального развития дошкольников «Я-ты-мы» и программы эмоционального развития детей дошкольного и младшего школьного возраста «Удивляюсь, злюсь, боюсь, хвастаюсь и радуюсь». Прогр ...

Сущность эстетического воспитания школьников
Эстетическое воспитания включает в себя довольно обширный круг вопросов, начиная с глубоко теоретических и кончая бытовыми ( явление моды, тот или иной тип развлекательной музыки), но не смотря на значительное развитие, все они тесно связаны между собой. Под эстетическом воспитанием обычно понимает ...

Общая характеристика младшего школьника, его учебной и игровой деятельности
Каждый период жизни и развития ребенка характеризуется определенным ведущим видом деятельности. В отечественной психологии под ведущей деятельностью понимается та, в процессе которой происходят качественные изменения в психике детей, происходит формирование основных психических процессов и свойств ...

Навигация по сайту

© 2025 Copyright www.butem.ru