При поиске оптимального решения задач линейного программирования возможны следующие ситуации: существует единственное решение задачи; существует бесконечное множество решений (альтернативный оптиум); ЦФ не ограничена; область допустимых решений – единственная точка; задача не имеет решений.
Рисунок 2.1 Геометрическая интерпретация ограничений и ЦФ задачи.
Методика решения задач ЛП графическим методом
В ограничениях задачи (1.2) заменить знаки неравенств знаками точных равенств и построить соответствующие прямые.
Найти и заштриховать полуплоскости, разрешенные каждым из ограничений-неравенств задачи (1.2). Для этого нужно подставить в конкретное неравенство координаты какой-либо точки [например, (0;0)], и проверить истинность полученного неравенства.
Если неравенство истинное,
то надо заштриховать полуплоскость, содержащую данную точку;
иначе (неравенство ложное) надо заштриховать полуплоскость, не содержащую данную точку.
Поскольку и должны быть неотрицательными, то их допустимые значения всегда будут находиться выше оси и правее оси , т.е. в I-м квадранте.
Ограничения-равенства разрешают только те точки, которые лежат на соответствующей прямой. Поэтому необходимо выделить на графике такие прямые.
Определить ОДР как часть плоскости, принадлежащую одновременно всем разрешенным областям, и выделить ее. При отсутствии ОДР задача не имеет решений.
Если ОДР – не пустое множество, то нужно построить целевую прямую, т.е. любую из линий уровня (где L – произвольное число, например, кратное и , т.е. удобное для проведения расчетов). Способ построения аналогичен построению прямых ограничений.
Построить вектор , который начинается в точке (0;0) и заканчивается в точке . Если целевая прямая и вектор построены верно, то они будут перпендикулярны.
При поиске максимума ЦФ необходимо передвигать целевую прямую в направлении вектора , при поиске минимума ЦФ – против направления вектора . Последняя по ходу движения вершина ОДР будет точкой максимума или минимума ЦФ. Если такой точки (точек) не существует, то можно сделать вывод о неограниченности ЦФ на множестве планов сверху (при поиске максимума) или снизу (при поиске минимум).
Определить координаты точки max (min) ЦФ и вычислить значение ЦФ . Для вычисления координат оптимальной точки необходимо решить систему уравнений прямых, на пересечении которых находится .
Это интересно
Воспитательный и обучающий потенциал игры
Воспитывающий потенциал игры всегда зависит: 1. От содержания познавательной и нравственной информации, заключенной в тематике игр; 2. От того, каким героям подражают дети; 3. Он обеспечивается самим процессом игры как деятельности, требующей достижения цели самостоятельного нахождения средств, сог ...
Мотивация к творчеству
Не могу согласиться с утверждением В.Н. Дружинина, что творчество амотивно. Творческим людям присуща мотивация самоактуализации, поэтому неодобрение общества не снижает голода творчества. Б. Ерофеев и другие писатели эпохи застоя уходили в истопники, дворники, сторожа, в андеграунд, продолжая писат ...
Структура музыкальности
Определение структуры музыкальности позволяет установить те музыкальные способности, которые надо развивать для успешного выполнение ребенком того или иного вида музыкальной деятельности. «Музыкальность - это чисто человеческое свойство, сложившееся в процессе общественной практики. Оно исторически ...