Решить задачу линейного программирования
1.f(x)=2x1+x2 ->extr
x1+ x2 <=3
x1+3x2 <=5
5x1-x2 <=5
x1+x2 >=0
x1>= 0, x2>=0
> plots[inequal]({a+b<=3,a+3*b<=5,5*a-b<=5,a+b>=0,a>=0,b>=0}, a=-2 5, b=-2 5, optionsfeasible=(color=red),
optionsopen=(color=blue, thickness=2),
optionsclosed=(color=green, thickness=3),
optionsexcluded=(color=yellow));
> with(simplex):
> C:={ x+y <=3, x+3*y <=5, 5*x-y <=5,x+y >=0};
> dp:=setup({ x+y <=3, x+3*y <=5, 5*x-y <=5,x+y >=0});
> n:=basis(dp);
display(C,[x, y]);
> f :=2*x+y:
> L:=cterm(C);
> feasible(C, NONNEGATIVE , 'NewC', 'Transform');
X:=dual(f,C,p);
R:=maximize(f,C ,NONNEGATIVE );
f_max:=subs(R,f);
R1:=minimize(f,C ,NONNEGATIVE );
f_min:=subs(R1,f);
Ответ: При x1=5/4 x2=5/4 f_max=15/4; При x1=0 x2=0 f_min=0;
Урок № 5.Решение матричных игр, используя методы линейного программирования и симплекс метод
Тип урока: урок контроль + урок изучения нового материала. Вид урока: Лекция.
Продолжительность: 2 часа.
Цели:1)Проверить и закрепить знания по прошедшему материалу на прошлых уроках.
2) Изучить новый метод решения матричных игр.
3) развить память, математическое мышление и внимание.
1 этап: проверить домашнее задание в виде самостоятельной работы.
2 этап: дать краткое описание метода зигзага
3 этап: закрепить новый материал и дать домашнее задание.
Ход занятия.
Методы линейного программирования - численные методы решения оптимизационных задач, cводящихся к формальным моделям линейного программирования.
Как известно, любая задача линейного программирования может быть приведена к канонической модели минимизации линейной целевой функции с линейными ограничениями типа равенств. Поскольку число переменных в задаче линейного программирования больше числа ограничений (n > m), то можно получить решение, приравняв нулю (n - m) переменных, называемых свободными. Оставшиеся m переменных, называемых базисными, можно легко определить из системы ограничений-равенств обычными методами линейной алгебры. Если решение существует, то оно называется базисным. Если базисное решение допустимо, то оно называется базисным допустимым. Геометрически, базисные допустимые решения соответствуют вершинам (крайним точкам) выпуклого многогранника, который ограничивает множество допустимых решений. Если задача линейного программирования имеет оптимальные решения, то по крайней мере одно из них является базисным.
Это интересно
Управление и его функции
Если обратиться к словарю В.И. Даля, то можно выяснить, что слово «управление» произошло от глаголов «править», «справляться» и означает «давать ход, направление, заставлять идти правильным, нужным путем, распоряжаться, заведовать, делать что-то хорошее, исправно, ладно». Изучая современную литерат ...
Методика использования мультимедиа технологий на уроке
Мультимедиа - это представление объектов и процессов не традиционным текстовым описанием, но с помощью фото, видео, графики, анимации, звука, то есть во всех известных сегодня формах. Здесь мы имеем два основных преимущества – качественное и количественное. Качественно новые возможности очевидны, е ...
Классификации здоровьесберегающих образовательных технологий, их основные
принципы
Под здоровьесберегающими образовательными технологиями понимаются технологии, реализующие модель здоровьесберегающей педагогики. Она не является альтернативой всем другим педагогическим системам и подходам (педагогике сотрудничества, личностно ориентированной педагогике и др). Главная отличительная ...